Подключение часов реального времени ds1302 к Arduino. Tiny RTC I2C Modules – часы, точный генератор, микросхема памяти Подключение часов реального времени

Часы реального времени - модуль, который хранит текущую дату и не сбрасывает её при отключении питания благодаря встроенной батарейке. Вы могли слышать о часах на основе чипа DS1307. Этот чип отличается крайне низкой точностью хода часов. Отставание на один час в сутки - это слишком. Рекомендую использовать модуль на основе высокоточного чипа DS3231, который снабжён термометром для корректирования хода часов в зависимости от температуры. Точность хода часов этого чипа находится на уровне хороших наручных часов и составляет 2ppm при температуре окружающей среды 0°-40°. При этом, модуль совместим со всеми библиотеками, написанными для модуля на основе чипа DS1307. Статья рассказывает о подключении модуля к Arduino и взаимодействии с ними с помощью библиотеки Time. Купить такой модуль у проверенного мной продавца вы можете .

Подключение часов реального времени

Часы подключаются по протоколу I2C всего двумя проводами. Необходимо дополнительно подтянуть выводы, к которым подключаются часы к рельсе питания с помощью резисторов 2 КОм. Выводы часов выглядят так:

Выводы 32К и SQW можно игнорировать. Их назначение не рассматривается в этой статье. SCL и SDA - это выводы интерфейса I2C. Их и нужно подключать к контроллеру. VCC и GND - +5 В и земля соответственно.

SCL и SDA на разных платах расположены на разных выводах:

Uno, Nano A4 (SDA), A5 (SCL)
Mega2560 20 (SDA), 21 (SCL)
Leonardo 2 (SDA), 3 (SCL)

Вывод SDA часов подключается к выводу SDA контроллера. SDL часов, соответственно, к SDL контроллера. После подключения проводов, должна получиться такая картина:

Работать с модулем часов реального времени удобней всего с помощью библиотеки. Наиболее удобная в этом плане, так и называется: Time (англ. время ).
Библиотека является «обёрткой» для другой популярной библиотеки для работы с модулем часов: DS1307RTC. Несмотря на то, что библиотека разработана для чипа DS1307, она прекрасно работает и с DS3231, так как протоколы взаимодействия совместимы.

Скачайте обе библиотеки.

После скачивания, поместите содержимое архивов в папку libraries, которая находится в папке со средой разработки Arduino. Запустите среду Arduino IDE и откройте стандартный пример библиотеки: Примеры->Time->TimeRTC
Или просто скопируйте этот код:

#include #include #include void setup() { Serial.begin(9600); while (!Serial) ; // wait until Arduino Serial Monitor opens setSyncProvider(RTC.get); // the function to get the time from the RTC if(timeStatus()!= timeSet) Serial.println("Unable to sync with the RTC"); else Serial.println("RTC has set the system time"); } void loop() { if (timeStatus() == timeSet) { digitalClockDisplay(); } else { Serial.println("The time has not been set. Please run the Time"); Serial.println("TimeRTCSet example, or DS1307RTC SetTime example."); Serial.println(); delay(4000); } delay(1000); } void digitalClockDisplay(){ // digital clock display of the time Serial.print(hour()); printDigits(minute()); printDigits(second()); Serial.print(" "); Serial.print(day()); Serial.print(" "); Serial.print(month()); Serial.print(" "); Serial.print(year()); Serial.println(); } void printDigits(int digits){ // utility function for digital clock display: prints preceding colon and leading 0 Serial.print(":"); if(digits < 10) Serial.print("0"); Serial.print(digits); }

#include

#include

#include

void setup () {

Serial . begin (9600 ) ;

while (! Serial ) ; // wait until Arduino Serial Monitor opens

setSyncProvider (RTC . get ) ; // the function to get the time from the RTC

if (timeStatus () != timeSet )

Serial . println ("Unable to sync with the RTC" ) ;

else

Serial . println ("RTC has set the system time" ) ;

void loop ()

if (timeStatus () == timeSet ) {

digitalClockDisplay () ;

} else {

Serial . println ("The time has not been set. Please run the Time" ) ;

Serial . println ("TimeRTCSet example, or DS1307RTC SetTime example." ) ;

Serial . println () ;

delay (4000 ) ;

delay (1000 ) ;

void digitalClockDisplay () {

// digital clock display of the time

Serial . print (hour () ) ;

printDigits (minute () ) ;

printDigits (second () ) ;

Serial . print (" " ) ;

Serial . print (day () ) ;

Serial . print (" " ) ;

Serial . print (month () ) ;

Serial . print (" " ) ;

Serial . print (year () ) ;

Serial . println () ;

void printDigits (int digits ) {

// utility function for digital clock display: prints preceding colon and leading 0

Serial . print (":" ) ;

if (digits < 10 )

Serial . print ("0" ) ;

Serial . print (digits ) ;

После загрузки скетча в плату запустите монитор порта (Сервис->монитор порта). Вы увидите сообщения от библиотеки. Отображаемое время будет неверным, либо библиотека вовсе пожалуется на не настроенные часы. Для настройки часов загрузите в плату пример из библиотеки DS1307RTC «SetTime» (Примеры->DS1307RTC->SetTime). Загрузите этот пример в плату. После загрузки часы окажутся настроенными на время компиляции скетча . Задержка между компиляцией и полной загрузкой составит совсем немного, чего окажется достаточно для точно настроенных часов. Но если вы отключите и заново подключите питание платы, даже через несколько часов, время в часах всё равно будет заново установлено на время компиляции и окажется неверным. Поэтому, используйте этот пример только для настройки, после настройки отключите часы или загрузите в плату другой скетч.

В данной статье мы рассмотрим, как сделать точные часы на базе Arduino или AVR-микроконтроллера микросхемы часов реального времени DS1307. Время будет выводиться на LCD дисплей.

Что необходимо

  • компьютер с установленной Arduino IDE;
  • микросхема DS1307 или модуль RTC на ее основе ;
  • комплектующие из списка элементов.

Вы можете заменить плату Arduino на контроллер Atmel, но убедитесь, что у него достаточно входных и выходных выводов и есть аппаратная реализация интерфейса I2C. Я использую ATMega168A-PU. Если вы будете использовать отдельный микроконтроллер, то вам понадобится программатор, например, AVR MKII ISP.

Предполагается, что читатель знаком с макетированием, программированием в Arduino IDE и имеет некоторые знания языка программирования C. Обе программы, приведенные ниже, не нуждаются в дополнительном разъяснении.

Введение

Как микроконтроллеры отслеживают время и дату? Обычный микроконтроллер обладает функцией таймера, который стартует от нуля при подаче напряжения питания, а затем начинает считать. В мире Arduino мы можем использовать функцию millis() , чтобы узнать, сколько прошло миллисекунд с того времени, когда было подано напряжение питания. Когда вы снимете и снова подадите питания, она начнет отсчет с самого начала. Это не очень удобно, когда дело доходит до работы с часами и датами.

Вот здесь и будет удобно использование микросхемы RTC (Real Time Clock, часов реального времени). Эта микросхема с батарейкой 3В или каким-либо другим источником питания следит за временем и датой. Часы/календарь обеспечивают информацию о секундах, минутах, часах, дне недели, дате, месяце и годе. Микросхема корректно работает с месяцами продолжительностью 30/31 день и с високосными годами. Связь осуществляется через шину I2C (шина I2C в данной статье не обсуждается).

Если напряжение на главной шине питания Vcc падает ниже напряжения на батарее Vbat, RTC автоматически переключается в режим низкого энергопотребления от резервной батареи. Резервная батарея - это обычно миниатюрная батарея (в виде «монетки», «таблетки») напряжением 3 вольта, подключенная между выводом 3 и корпусом. Таким образом, микросхема по-прежнему будет следить за временем и датой, и когда на основную схему будет подано питание, микроконтроллер получит текущие время и дату.

В этом проекте мы будем использовать DS1307. У этой микросхемы вывод 7 является выводом SQW/OUT (выходом прямоугольных импульсов). Вы можете использовать этот вывод для мигания светодиодом и оповещения микроконтроллера о необходимости фиксации времени. Мы будем делать и то, и другое. Ниже приведено объяснение работы с выводом SQW/OUT.

Для управления работой вывода SQW/OUT используется регистр управления DS1307.

Бит 7: управление выходом (OUT) Этот бит управляет выходным уровнем вывода SQW/OUT, когда выход прямоугольных импульсов выключен. Если SQWE = 0, логический уровень на выводе SQW/OUT равен 1, если OUT = 1, и 0, если OUT = 0. Первоначально обычно этот бит равен 0. Бит 4: включение прямоугольных импульсов (SQWE) Этот бит, когда установлен в логическую 1, включает выходной генератор. Частота прямоугольных импульсов зависит от значений битов RS0 и RS1. Когда частота прямоугольных импульсов настроена на значение 1 Гц, часовые регистры обновляются во время спада прямоугольного импульса. Первоначально обычно этот бит равен 0. Биты 1 и 0: выбор частоты (RS) Эти биты управляют частотой выходных прямоугольных импульсов, когда выход прямоугольных импульсов включен. Следующая таблица перечисляет частоты прямоугольных импульсов, которые могут быть выбраны с помощью данных битов. Первоначально обычно эти биты равны 1.

Данная таблица поможет вам с частотой:

Выбор частоты прямоугольных импульсов DS1307
Частота импульсов Бит 7 Бит 6 Бит 5 Бит 4 Бит 3 Бит 2 Бит 1 Бит 0
1 Гц 0 0 0 1 0 0 0 0
4,096 кГц 0 0 0 1 0 0 0 1
8,192 кГц 0 0 0 1 0 0 1 0
32,768 кГц 0 0 0 1 0 0 1 1

Если вы подключили светодиод и резистор к выводу 7 и хотите, чтобы светодиод мигал с частотой 1 Гц, то должны записать в регистр управления значение 0b00010000. Если вам нужны импульсы 4,096 кГц, то вы должны записать 0b000100001. В этом случае, чтобы увидеть импульсы вам понадобится осциллограф, так как светодиод будет мигать так быстро, что будет казаться, что он светится постоянно. Мы будем использовать импульсы с частотой 1 Гц.

Аппаратная часть

Ниже показана структурная схема того, что нам необходимо.

Мы нужны:

  • разъем ISP (In System Programming, внутрисхемное программирование) для прошивки микроконтроллера;
  • кнопки для установки времени и даты;
  • микроконтроллер для связи с RTC через шину I2C;
  • дисплей для отображения даты и времени.

Принципиальная схема:


Перечень элементов

Ниже приведен скриншот из Eagle:


Программное обеспечение

В этом руководстве мы будем использовать два различных скетча: один, который записывает время и дату в RTC, и один, который считывает время и дату из RTC. Мы сделали так потому, что так вы сможете получить более полное представление о том, что происходит. Мы будем использовать одну и ту же схему для обеих программ.

Сперва мы запишем время и дату в RTC, что аналогично установке времени на часах.

Мы используем две кнопки. Одну для увеличения часов, минут, даты, месяца, года и дня недели, а вторую для выбора между ними. Приложение не считывает состояния каких-либо критически важных датчиков, поэтому мы будем использовать прерывания для проверки, нажата ли кнопка, и обработки дребезга контактов.

Следующий код устанавливает значения и записывает их в RTC:

#include // Определение выводов LCD #define RS 9 #define E 10 #define D4 8 #define D5 7 #define D6 6 #define D7 5 LiquidCrystal lcd(RS, E, D4, D5, D6, D7); // Прерывание 0 – это вывод 4 микроконтроллера (цифровой вывод 2 Arduino) int btnSet = 0; // Прерывание 1 – это вывод 5 микроконтроллера (цифровой вывод 3 Arduino) int btnSel = 1; // Флаги прерываний volatile int togBtnSet = false; volatile int togBtnSel = false; volatile int counterVal = 0; // Переменные для отслеживания, где в "меню" мы находимся volatile int menuCounter = 0; // Массив значений volatile int menuValues; // 0=часы, 1=минуты, 2=день месяца, 3=месяц, 4=год, 5=день недели // Заголовки меню char* menuTitles = { "Set hour. ", "Set minute. ", "Set date. ", "Set month. ", "Set year. ", "Set day (1=mon)." }; // Массив дней недели char* days = { "NA", "Mon", "Tue", "Wed", "Thu", "Fre", "Sat", "Sun" }; void setup() { // Объявление прерываний, выполнение функций increaseValue/nextItem // по переднему фронту на btnXXX attachInterrupt(btnSet, increaseValue, RISING); attachInterrupt(btnSel, nextItem, RISING); Wire.begin(); lcd.begin(16,2); showWelcome(); } // Функция прерывания void increaseValue() { // Переменные static unsigned long lastInterruptTime = 0; // Создание метки времени unsigned long interruptTime = millis(); // Если timestamp - lastInterruptTime больше, чем 200 if (interruptTime - lastInterruptTime > 200) { togBtnSet = true; // Увеличить counterVal на 1 counterVal++; } // Установка lastInterruptTime равным метке времени // так мы знаем, что прошли дальше lastInterruptTime = interruptTime; } // Функция прерывания для следующего пункта меню void nextItem() { static unsigned long lastInterruptTime = 0; unsigned long interruptTime = millis(); if (interruptTime - lastInterruptTime > 200) { togBtnSel = true; // Увеличить счетчик меню, так мы переходим к следующему пункту меню menuCounter++; if (menuCounter > 6) menuCounter = 0; // Поместить counterVal в элемент массива счетчиков меню menuValues = counterVal; // Сбросить counterVal, сейчас мы начинаем с 0 для следующего пункта меню counterVal = 0; } lastInterruptTime = interruptTime; } // Функция преобразования десятичных чисел в двоично-десятичный код byte decToBCD(byte val) { return ((val/10*16) + (val%10)); } // Функция проверки, была ли нажата кнопки листания меню, // и обновления заголовка на дисплее. void checkCurrentMenuItem() { if (togBtnSel) { togBtnSel = false; lcd.setCursor(0,0); lcd.print(menuTitles); } } // Функция проверки, была ли нажата кнопка увеличения значения, // и обновления переменной в соответствующем элементе массива, // плюс вывод нового значения на дисплей. void checkAndUpdateValue() { // Проверить, если прерывание сработало = кнопка нажата if (togBtnSet) { // Обновить значение элемента массива с counterVal menuValues = counterVal; // Сбросить флаг прерывания togBtnSet = false; lcd.setCursor(7,1); // Напечатать новое значение lcd.print(menuValues); lcd.print(" "); } } // Короткое приветственное сообщение, теперь мы знаем, что всё нормально void showWelcome() { lcd.setCursor(2,0); lcd.print("Hello world."); lcd.setCursor(3,1); lcd.print("I"m alive."); delay(500); lcd.clear(); } // Запись данных в RTC void writeRTC() { Wire.beginTransmission(0x68); Wire.write(0); // начальный адрес Wire.write(0x00); // секунды Wire.write(decToBCD(menuValues)); // преобразовать минуты в BCD-код и записать Wire.write(decToBCD(menuValues)); // преобразовать часы в BCD-код и записать Wire.write(decToBCD(menuValues)); // преобразовать день недели в BCD-код и записать Wire.write(decToBCD(menuValues)); // преобразовать день месяца в BCD-код и записать Wire.write(decToBCD(menuValues)); // преобразовать месяц в BCD-код и записать Wire.write(decToBCD(menuValues)); // преобразовать год в BCD-код и записать Wire.write(0b00010000); // включить прямоугольные импульсы 1 Гц на выводе 7 Wire.endTransmission(); // закрыть передачу } // Показать время // Чтобы посмотреть, что RTC работает, вам необходимо посмотреть другую программу void showTime() { lcd.setCursor(0,0); lcd.print(" "); lcd.print(menuValues); lcd.print(":"); // часы lcd.print(menuValues); lcd.print(":"); lcd.print("00 "); // минуты lcd.setCursor(3,1); lcd.print(days); lcd.print(" "); // день недели lcd.print(menuValues); lcd.print("."); // дата lcd.print(menuValues); lcd.print("."); // месяц lcd.print(menuValues); lcd.print(" "); // год // вызов функции writeRTC writeRTC(); } void loop() { if (menuCounter < 6) { checkCurrentMenuItem(); checkAndUpdateValue(); } else { showTime(); } }

Эта программа начинается с короткого приветственного сообщения. Это сообщение говорит нам, что подано питание, LCD работает, и что программа запустилась. Так как скетч служит лишь для того, чтобы показать, как записать данные из Arduino в RTC DS1307, то в нем отсутствует вспомогательный функционал (проверка, попадают ли значения в допустимые диапазоны; зацикливание при нажимании на кнопку увеличения значения, то есть сброс на 0, когда значение, например, минут превысит 60, и т.д.)

// Включение заголовочных файлов #include #include // Определение выводов LCD #define RS 9 #define E 10 #define D4 8 #define D5 7 #define D6 6 #define D7 5 LiquidCrystal lcd(RS, E, D4, D5, D6, D7); // Вывод, который будет принимать импульсы от RTC volatile int clockPin = 0; // Переменные времени и даты byte second; byte minute; byte hour; byte day; byte date; byte month; byte year; // Массив дней недели char* days = { "NA", "Mon", "Tue", "Wed", "Thu", "Fre", "Sat", "Sun" }; // Функция, которая выполняется только при запуске void setup() { pinMode(clockPin, INPUT); pinMode(clockPin, LOW); Wire.begin(); lcd.begin(16,2); showWelcome(); } // Короткое приветственное сообщение, теперь мы знаем, что всё нормально void showWelcome() { lcd.setCursor(2,0); lcd.print("Hello world."); lcd.setCursor(3,1); lcd.print("I"m alive."); delay(500); lcd.clear(); } byte bcdToDec(byte val) { return ((val/16*10) + (val%16)); } // Это выполняется постоянно void loop() { // Если уровень на выводе clockPin высокий if (digitalRead(clockPin)) { // Начать передачу I2C, адрес 0x68 Wire.beginTransmission(0x68); // Начать с адреса 0 Wire.write(0); // Закрыть передачу Wire.endTransmission(); // Начать чтение 7 двоичных данных от 0x68 Wire.requestFrom(0x68, 7); second = bcdToDec(Wire.read()); minute = bcdToDec(Wire.read()); hour = bcdToDec(Wire.read()); day = bcdToDec(Wire.read()); date = bcdToDec(Wire.read()); month = bcdToDec(Wire.read()); year = bcdToDec(Wire.read()); // Форматирование и отображение времени lcd.setCursor(4,0); if (hour < 10) lcd.print("0"); lcd.print(hour); lcd.print(":"); if (minute < 10) lcd.print("0"); lcd.print(minute); lcd.print(":"); if (second < 10) lcd.print("0"); lcd.print(second); lcd.setCursor(2,1); // Форматирование и отображение даты lcd.print(days); lcd.print(" "); if (date < 10) lcd.print("0"); lcd.print(date); lcd.print("."); if (month < 10) lcd.print("0"); lcd.print(month); lcd.print("."); lcd.print(year); } }

Заключение

В данной статье мы рассмотрели микросхему DS1307 от Maxim Integrated и написали две демонстрационные программы: одну для установки времени и даты и вторую для чтения времени и даты. Для проверки нажатия кнопок мы использовали прерывания, в которых также избавлялись от влияния дребезга контактов.

Фото и видео

Установка времени

Считывание времени

  • Отличительные особенности:
  • Подсчет реального времени в секундах, минутах, часах, датах месяца, месяцах, днях недели и годах с учетом высокосности текущего года вплоть до 2100 г.
  • Дополнительное ОЗУ 31 x 8 для хранения данных
  • Последовательный ввод – вывод информации для сокращения выводов микросхемы
  • Выполнение всех функций при напряжении питания 2.0-5.5 В
    - выполнение всех функций при напряжении 2.0-5.5 В на дополнительном выводе питания
  • Потребление не более 300 нA при 2.5 В питания
  • Чтение и запись информации по одному байту или потоком
  • Исполнение в 8-ми выводном корпусе DIP, а также по заказу в 8-ми выводном SOIC корпусе для поверхностного монтажа
  • Простой 3-проводной интерфейс
  • Совместимость с TTL-микросхемами (Vcc= 5V)
  • Возможность поставки в промышленном диапазоне температур: от -40°C до+85°C
  • Совместимость с DS1202
  • Отличия от DS1202:
    возможность подключения встроенной цепи подзарядки к выводу Vcc1
    два вывода питания для подключения основного и резервного источника питания
    увеличено ОЗУ на 7 байт

Описание выводов:

X1, X2 подключение кварцевого резонатора 32.768 кГц
GND общий
RST сброс
I/O ввод - вывод данных
SCLK синхронизация последовательной связи
VCC1, VCC2 выводы питания

Структурная схема DS1302:

Общее описание:

Микросхема DS1302 содержит часы реального времени с календарем и 31 байт статического ОЗУ. Она общается с микропроцессором через простой последовательный интерфейс. Информация о реальном времени и календаре представляется в секундах минутах, часах, дне, дате, месяце и годе. Если текущий месяц содержит менее 31 дня, то микросхема автоматически определит количество дней в месяце с учетом высокосности текущего года. Часы работают или в 24-часовом или 12-часовом формате с индикатором AM/PM (до полудня/ после полудня). Подключение DS1302 к микропроцессу упрощено за счет синхронной последовательной связи. Для этого требуется только 3 провода: (1) RST (сброс), (2) I/O (линия данных) и (3) SCLK (синхронизация последовательной связи). Данные могут передаваться по одному байту или последовательностью байтов до 31. DS1302 разработан, чтобы потреблять малую мощность и сохранять данные и информацию часов при потреблении менее 1 мкВт. DS1302 - преемник DS1202. В дополнение к основным функциям хранения времени DS1202, DS1302 имеет два вывода питания для подключения основного и резервного источника питания, возможность подключения программируемой цепи заряда к выводу VCC1 и семь дополнительных байтов ОЗУ.

Подключение:

Подключение DS1307 к Arduino:

RTC DS1307 Arduino UNO
GND GND
VCC +5V
SDA A4
SCL A5

Подключение DS1302 к Arduino:

RTC DS1302 Arduino UNO
GND GND
VCC +5V
RST 6 (Можно изменить на другие в скетче)
CLK 7 (Можно изменить на другие в скетче)
DAT

(Можно изменить на другие в скетче)

Подключение DS3231 к Arduino:

RTC DS3231 Arduino UNO
GND GND
VCC +5V
SDA A4
SCL A5

Модуль DS1302 часы реального времени на Алиэкспресс http://ali.pub/1br52w

Код программы для модуля 1302 и дисплей 1602 I2C

В зависимости от того какой модуль Вы подключаете, необходимо в программе указать

Для DS1302 :

time . begin (RTC_DS1302 , 10 , 13 , 12 );

#include

virtuabotixRTC myRTC(6, 7, 8); //CLK, DAT, RST

Программа

#include

#include

LiquidCrystal_I2C lcd(0x3F ,2,1,0,4,5,6,7,3, POSITIVE);

void setup() {

lcd.begin(16,2);

//myRTC.setDS1302Time(00,04, 12, 06, 18, 04, 2017);

void loop() {

myRTC.updateTime();

lcd.setCursor(0, 0);

lcd.print("date: ");

lcd.print(myRTC.dayofmonth);

lcd.print("/");

lcd.print(myRTC.month);

lcd.print("/");

lcd.print(myRTC.year);

lcd.print(" ");

lcd.setCursor(0, 1);

lcd.print("time: ");

lcd.print(myRTC.hours);

lcd.print(":");

lcd.print(myRTC.minutes);

lcd.print(":");

lcd.print(myRTC.seconds);

lcd.println(" ");

Так же не забываем о экономии при покупке товаров на Алиєкспресс с помощью кэшбэка

Преимущества библиотеки:

Библиотека имеет внутренние функции аппаратной обработки протоколов передачи данных I2C и SPI, а следовательно не требует подключения дополнительных библиотек, но и не конфликтует с ними, если таковые всё же подключены.

Библиотека имеет внутренние функции программой обработки протокола передачи данных 3-Wire

Для инициализации модуля необходимо вызвать функцию begin с названием модуля.

Подключение модулей осуществляется к аппаратным выводам arduino используемой шины (за исключением 3-Wire)

Простота установки и чтения времени функциями settime и gettime

функция settime может устанавливать дату и время, как полностью, так и частично (например только минуты, или только день, и т.д.)

функция gettime работает как функция date в php, возвращая строку со временем, но если её вызвать без параметра, то функция ничего не вернёт, а время можно прочитать из переменных в виде чисел.

Библиотека расширяемая, то есть для того, чтоб она работала с новым модулем, нужно указать параметры этого модуля в уже существующих массивах файла RTC.h (тип шины, частота шины в кГц, режимы работы, адреса регистров и т.д.), как всё это сделать, описано в файле extension.txt

Таким образом добавив новый модуль в библиотеку, мы лишь увеличим область занимаемой динамической памяти на ~ 36 байт, при этом не затронув область памяти программ.

При вызове функции begin, библиотека читает флаги регистров модуля и при необходимости устанавливает или сбрасывает их так, чтоб модуль мог работать от аккумуляторной батареи, а на программируемом выводе меандра (если таковой у модуля есть) установилась частота 1Гц, тогда этот вывод можно использовать в качестве внешнего посекундного прерывания.

При работе с модулем DS1302 не нужны никакие резисторы на выводе GND (которые нужны для его работы с другими библиотеками этого модуля), это достигнуто тем, что для шины 3-Wire указана конкретная частота 10кГц, не зависимо от частоты CPU arduino.

В библиотеке реализована еще одна не обязательная функция period, принимающая в качестве единственного аргумента - количество минут (от 1 до 255)

если в течении указанного времени была вызвана функция gettime несколько раз, то запрос к модулю по шине будет отправлено только в первый раз, а ответом на все остальные запросы будет сумма времени последнего ответа модуля и времени прошедшего с этого ответа.

Функцию period достаточно вызвать один раз.

Подробное описание:

} // ОПИСАНИЯ ПАРАМЕТРОВ ФУНКЦИЙ: // // Подключение библиотеки: // #include // iarduino_RTC time(название модуля [, вывод SS/RST [, вывод CLK [, вывод DAT]]]); // если модуль работает на шине I2C или SPI, то достаточно указать 1 параметр, например: iarduino_RTC time(RTC_DS3231); // если модуль работает на шине SPI, а аппаратный вывод SS занят, то номер назначенного вывода SS для модуля указывается вторым параметром, например: iarduino_RTC time(RTC_DS1305,22); // если модуль работает на трехпроводной шине, то указываются номера всех выводов, например: iarduino_RTC time(RTC_DS1302, 1, 2, 3); // RST, CLK, DAT // // Для работы с модулями, в библиотеке реализованы 5 функции: // инициировать модуль begin(); // указать время settime(секунды [, минуты [, часы [, день [, месяц [, год [, день недели]]]]]]); // получить время gettime("строка с параметрами"); // мигать времем blinktime(0-не_мигать / 1-мигают_сек / 2-мигают_мин / 3-мигают_час / 4-мигают_дни / 5-мигают_мес / 6-мигает_год / 7-мигают_дни_недели / 8-мигает_полдень) // разгрузить шину period (минуты); // // Функция begin(): // функция инициирует модуль: проверяет регистры модуля, запускает генератор модуля и т.д. // // Функция settime(секунды [, минуты [, часы [, день [, месяц [, год [, день недели]]]]]]): // записывает время в модуль // год указывается без учёта века, в формате 0-99 // часы указываются в 24-часовом формате, от 0 до 23 // день недели указывается в виде числа от 0-воскресенье до 6-суббота // если предыдущий параметр надо оставить без изменений, то можно указать отрицательное или заведомо большее значение // пример: settime(-1, 10); установит 10 минут, а секунды, часы и дату, оставит без изменений // пример: settime(0, 5, 13); установит 13 часов, 5 минут, 0 секунд, а дату оставит без изменений // пример: settime(-1, -1, -1, 1, 10, 15); установит дату 01.10.2015 , а время и день недели оставит без изменений // // Функция gettime("строка с параметрами"): // функция получает и выводит строку заменяя описанные ниже символы на текущее время // пример: gettime("d-m-Y, H:i:s, D"); ответит строкой "01-10-2015, 14:00:05, Thu" // пример: gettime("s"); ответит строкой "05" // указанные символы идентичны символам для функции date() в PHP // s секунды от 00 до 59 (два знака) // i минуты от 00 до 59 (два знака) // h часы в 12-часовом формате от 01 до 12 (два знака) // H часы в 24-часовом формате от 00 до 23 (два знака) // d день месяца от 01 до 31 (два знака) // w день недели от 0 до 6 (один знак: 0-воскресенье, 6-суббота) // D день недели наименование от Mon до Sun (три знака: Mon Tue Wed Thu Fri Sat Sun) // m месяц от 01 до 12 (два знака) // M месяц наименование от Jan до Dec (три знака: Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec) // Y год от 2000 до 2099 (четыре знака) // y год от 00 до 99 (два знака) // a полдень am или pm (два знака, в нижнем регистре) // A полдень AM или PM (два знака, в верхнем регистре) // строка не должна превышать 50 символов // // если требуется получить время в виде цифр, то можно вызвать функцию gettime() без параметра, после чего получить время из переменных // seconds секунды 0-59 // minutes минуты 0-59 // hours часы 1-12 // Hours часы 0-23

Модуль часов реального времени DS1307
Tiny RTC I2C module 24C32 memory DS1307 clock

Небольшой модуль, выполняющий функции часов реального времени. Выполнен на базе микросхемы DS1307ZN+ . Непрерывный отсчет времени происходит благодаря автономному питанию от батареи, установленной в модуль. Также модуль содержит память EEPROM объемом 32 Кбайт, сохраняющую информацию при отключении всех видов питания. Память и часы связаны общей шиной интерфейса I2C. На контакты модуля выведены сигналы шины I2C. При подключении внешнего питания происходит подзарядка батареи через примитивную цепь подзарядки. На плате имеется место для монтажа цифрового датчика температуры DS18B20. В комплект поставки он не входит.
Использование этого устройства происходит при измерении временных интервалов более недели приборами на основе микроконтроллера. Задействовать собственные ресурсы МК для этой цели неоправданно, а зачастую невозможно. Обеспечить бесперебойное питание на длительный срок дорого, установить батарею для питания МК нельзя из-за значительного тока потребления. Тут на выручку приходит модуль часов реального времени DS1307.
Также модуль часов реального времени DS1307 благодаря наличию собственной памяти позволяет регистрировать данные событий, происходящих несколько раз в сутки, например измерения температуры. Журнал событий в дальнейшем считывается из памяти модуля. Эти возможности позволяют использовать модуль в составе автономной автоматической метеостанции или для исследований климата в труднодоступных местах: пещерах, вершинах скал. Становится возможным регистрировать тензопараметры архитектурных сооружений, например опор мостов и других. При оснащении прибора радиосвязью достаточно установить его в исследуемой местности.

Характеристики

Напряжение питания 5 В
Размеры 27 х 28 х 8,4 мм

Электрическая схема

Устройство обменивается данными с электроникой прибора с помощью сигналов SCL и SDA. Микросхема IC2 - часы реального времени. Конденсаторы С1 и С2 снижают уровень помех в линии питания VCC. Резисторы R2 и R3 обеспечивают надлежащий уровень сигналов SCL и SDA. С вывода 7 микросхемы IC2 поступает сигнал SQ, состоящий из прямоугольных импульсов частотой 1 Гц. Он используется для проверки работоспособности МС IC2. Компоненты R4, R5, R6, VD1 обеспечивают подзарядку батареи BAT1. Для хранения данных модуль часов реального времени DS1307 содержит микросхему IC1 - долговременная память. US1 - датчик температуры. Сигналы модуля и линии питания выведены на соединители JP1 и P1.

Информационная шина

I2C это стандартный последовательный интерфейс посредством двух сигнальных линий SCL, SDA и общего провода. Линии интерфейса образуют шину. К линиям интерфейса I2C можно подключить несколько микросхем, не только микросхемы модуля. Для идентификации микросхемы на шине, а именно записи данных в требуюмую МС и определения от какой МС поступают данные. Каждая микросхема имеет уникальный адрес для проложенной шины. DS1307 имеет Адрес 0x68. Он записан на заводе-изготовителе. Микросхема памяти имеет адрес 0x50. В программное обеспечение Arduino входит программная библиотека, обеспечивающая поддержку I2C.

Микросхема часов реального времени

DS1307 обладает низким энергопотреблением, обменивается данными с другими устройствами через интерфейс I2C, содержит память 56 байт. Содержит часы и календарь до 2100 г. Микросхема часов реального времени обеспечивает другие устройства информацией о настоящем моменте: секунды, минуты, часы, день недели, дата. Количество дней в каждом месяце учитывается автоматически. Есть функция компенсации для високосного года. Имеется флаг, чтобы определить, работают часы в 24-часовом режиме или 12-часовом режиме. Для работы в режиме 12 часов микросхема имеет бит, откуда считываются данные для передачи о периоде времени: до или после обеда.

Микросхема долговременной памяти

Рисунок модуля часов реального времени DS1307 со стороны батареи с установленным датчиком температуры U1.

Батарея

В держатель на обратной стороне платы устанавливается литиевая дисковая батарея CR2032. Она выпускается множеством производителей, например изготовленная фирмой GP обеспечивает напряжение 3,6 В и ток разряда 210 мАч. Батарея подзаряжается во время включения питания, с таким режимом работы литиевой батареи мы сталкиваемся на материнской плате компьютера.

Подзарядка батареи

Программное обеспечение

Для работы модуля в составе Arduino вполне подойдет устаревшая библиотека с сайта Adafruit под названием RTCLib. Скетч называется DS1307.pde. Существует обновленная версия . Следует скачать архив, распаковать его, переименовать и скопировать библиотеку в свой каталог библиотек Arduino.

Подключение к Arduino Mega

Для этого следует использовать скетчи
SetRTC устанавливает время в часах в соответствии со временем, которое указано в скетче.
GetRTC выводит время.
Оба скетча требуют библиотеку Wire и определить адрес I2C. Чтобы установить адрес часов на шине I2C, используйте этот I2C сканер .

Соединение с Arduino Mega.

Подключите SCL и SDA к соответствующим контактам 21 и 20 на Arduino Mega 2560. Подключите питание.

Соединение с Arduino Uno


Установите время в скетче SetRTC и загрузите в Arduino. Затем нажмите кнопку сброса для установки часов. Теперь загрузите скетч GetRTC. Откройте последовательный монитор и смотрите. Есть специальная библиотека времени . Она имеет много различных функций, которые могут быть полезны в зависимости от ситуации. Чтобы установить время, используя библиотеку нужно скачать . При использовании скетча можно синхронизировать часы реального времени с часами персонального компьютера.

DS1307 это небольшой модуль, предназначенный для подсчета времени. Собранный на базе микросхемы DS1307ZN с реализацией питания от литиевой батарейки (LIR2032), что позволяет работать автономно в течение длительного времени. Также на модуле, установлена энергонезависимая память EEPROM объемом 32 Кбайт (AT24C32). Микросхема AT24C32 и DS1307ZN связаны обшей шиной интерфейсом I2C.

Технические параметры

Напряжение питания: 5В
Рабочая температура: – 40℃ … + 85℃
Память: 56 байт (энергонезависимая)
Батарейка: LIR2032 (автоматическое определение источника питания)
Интерфейса: I2C
Габариты: 28мм х 25мм х 8 мм

Общие сведения

Использовании модуля DS1307 зачастую очень оправдано, например, когда данные считываются редко, интервалом более недели, использовать собственные ресурсы контроллера, неоправданно или невозможно. Обеспечивание бесперебойное питание, например платы Arduino, на длительный срок дорого, даже при использовании батареи.
Благодаря собственной памяти и автономностью, можно регистрировать события, (при автономном питании) например изменение температуры и так далее, данные сохраняются в памяти их можно считать из памяти модуля. Так что модуль DS1307 часто используют, когда контроллерам Arduino необходимо знать точное время, для запуска какого то события и так далее.

Обмен данными с другими устройствами осуществляется по интерфейсу I2C с выводов SCL и SDA. Конденсаторы С1 и С2 необходимы для снижения помех по линию питания. Чтобы обеспечить надлежащего уровня сигналов SCL и SDA установлены резисторы R2 и R3 (подтянуты к питанию). Для проверки работоспособности модуля, на вывод 7 микросхему DS1307Z, подается сигнал SQ, прямоугольной формы с частотой 1 Гц. Элементы R4, R5, R6, VD1 необходимы для подзарядку литиевой батарейки. Так же, на плате предусмотрено посадочное место (U1), для установки датчика температуры DS18B20 (при необходимости можно впаять его), считывать показания, можно с вывода DS, который подтянут к пиатнию, через резистор R1 сопротивлением 3.3 кОм. Принципиальную схему и назначение контактов можно посмотреть на рисунках ниже.

На плате расположено две группы контактов, шагом 2.54 мм, для удобного подключения к макетной плате, буду использовать штырьевые разъемы, их необходимо впаять.

Первая группа контактов:
DS: вывод DS18B20 (1-wire)


VCC: «+» питание модуля
GND: «-» питание модуля

Вторая группа контактов:
SQ: вход 1 МГц
DS: вывод DS18B20 (1-wire)
SCL: линия тактирования (Serial CLock)
SDA: линия данных (Serial Dфta)
VCC: «+» питание модуля
GND:«-» питание модуля
BAT:

Подзарядка батареи
Как описывал ваше модуль может заряжать батарею, реализовано это, с помощью компонентов R4, R5, R6 и диода D1. Но, данная схема имеет недостаток, через резистор R4 и R6 происходит разряд батареи (как подметил пользователь ALEXEY, совсем не большой). Так как модуль потребляем незначительный ток, можно удалить цепь питания, для этого убираем R4, R5, R6 и VD1, вместо R6 поставим перемычку (после удаления компонентов, можно использовать обычную батарейку CR2032).

Подключение DS1307 к Arduino

Необходимые детали:
Arduino UNO R3 x 1 шт.
Провод DuPont, 2,54 мм, 20 см x 1 шт.
Кабель USB 2.0 A-B x 1 шт.
Часы реального времени RTC DS1307 x 1 шт.

Подключение:
Для подключения часы реального времени DS1307, необходимо впаять впаять штыревые разъемы в первую группу контактов. Далее, подключаем провода SCL (DS1307) к выводу 4 (Arduino UNO) и SDA (DS1307) к выводу 5 (Arduino UNO), осталось подключить питания VCC к +5V и GND к GND. Кстати, в различных платах Arduino вывода интерфейса I2C отличаются, назначение каждого можно посмотреть ниже.

Установка времени DS1307
Первым делом, необходимо скачать и установить библиотеку «DS1307RTC» и «TimeLib» в среду разработки IDE Arduino, далее необходимо настроить время, открываем пример из библиотеки DS1307RTC «Файл» —> «Примеры» —> «DS1307RTC» —> «SetTime» или копируем код снизу.

// Подключаем библиотеку DS1307RTC const char *monthName = { "Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec" }; tmElements_t tm; void setup() { bool parse=false; bool config=false; // get the date and time the compiler was run if (getDate(__DATE__) && getTime(__TIME__)) { parse = true; // and configure the RTC with this info if (RTC.write(tm)) { config = true; } } Serial.begin(9600); while (!Serial) ; // wait for Arduino Serial Monitor delay(200); if (parse && config) { Serial.print("DS1307 configured Time="); Serial.print(__TIME__); Serial.print(", Date="); Serial.println(__DATE__); } else if (parse) { Serial.println("DS1307 Communication Error:-{"); Serial.println("Please check your circuitry"); } else { Serial.print("Could not parse info from the compiler, Time=\""); Serial.print(__TIME__); Serial.print("\", Date=\""); Serial.print(__DATE__); Serial.println("\""); } } void loop() { } bool getTime(const char *str) { int Hour, Min, Sec; if (sscanf(str, "%d:%d:%d", &Hour, &Min, &Sec) != 3) return false; tm.Hour = Hour; tm.Minute = Min; tm.Second = Sec; return true; } bool getDate(const char *str) { char Month; int Day, Year; uint8_t monthIndex; if (sscanf(str, "%s %d %d", Month, &Day, &Year) != 3) return false; for (monthIndex = 0; monthIndex < 12; monthIndex++) { if (strcmp(Month, monthName) == 0) break; } if (monthIndex >= 12) return false; tm.Day = Day; tm.Month = monthIndex + 1; tm.Year = CalendarYrToTm(Year); return true; }

Скачать скетч

Загружаем данную скетч в контроллер Arduino (время берется с ОС), открываем «Мониторинг порта»

Программа
В библиотеке есть еще один пример, открыть его можно DS1307RTC «Файл» —> «Примеры» —> «DS1307RTC» —> «ReadTest»

/* Тестирование производилось на Arduino IDE 1.6.12 Дата тестирования 23.11.2016г. */ #include // Подключаем библиотеку Wire #include // Подключаем библиотеку TimeLib #include // Подключаем библиотеку DS1307RTC void setup() { Serial.begin(9600); // Устанавливаем скорость передачи данных while (!Serial) ; // Ожидаем подключение последовательного порта. Нужно только для Leonardo delay(200); // Ждем 200 мкс Serial.println("DS1307RTC Read Test"); // Выводим данные на последовательный порт Serial.println("-------------------"); // Выводим данные на последовательный порт } void loop() { tmElements_t tm; if (RTC.read(tm)) { Serial.print("Ok, Time = "); print2digits(tm.Hour); Serial.write(":"); print2digits(tm.Minute); Serial.write(":"); print2digits(tm.Second); Serial.print(", Date (D/M/Y) = "); Serial.print(tm.Day); Serial.write("/"); Serial.print(tm.Month); Serial.write("/"); Serial.print(tmYearToCalendar(tm.Year)); Serial.println(); } else { if (RTC.chipPresent()) { Serial.println("The DS1307 is stopped. Please run the SetTime"); Serial.println("example to initialize the time and begin running."); Serial.println(); } else { Serial.println("DS1307 read error! Please check the circuitry."); Serial.println(); } delay(9000); } delay(1000); } void print2digits(int number) { if (number >= 0 && number < 10) { Serial.write("0"); } Serial.print(number); }

Скачать скетч

Загружаем данную код в контроллер Arduino, открываем «Мониторинг порта»